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Dynamic Response of Laminated Composite Plates

Using a Three-Dimensional Hybrid-Stress Finite-Element
Formulation

In this paper a method of analysis of dynamic response of laminated

composite plates is presented. The analysis is carried by using a

hybrid-stress finite-element numerical technique established by the

authors in their earlier publication. By using this approach the

response of simply supported laminated plates subject to sinusoidal

loading are investigated. For the solution of the finite-element

equations of motion of free vibrations and dynamic response problems,

two effective methods of solution, the space iteration method and the

Newmark direct integration method are used. These two methods are

discussed in this paper.

INTRODUCTION

Since Pian [i] first established the assumed stress hybrid finite element

model and derived the corresponding element stiffness matrix in 1964, the hybrid

stress model has been shown highly accurate, and easy to fulfill the

compatibility condition of the finite element method. Laminated thick plate

element has been developed by Mau et al. [2] by using hybrid stress method. In

the comparison of results with elasticity solution [3,4], they observed excellent

accuracy in predicting both displacements and stresses. In their assumption for

the stress field, transverse normal stress was not included. Constant transverse

displacement through the laminate thickness was also assumed. These assumptions

did not agree well with the actual mechanism of deformation of laminated plates

in bending. Spilker [5] developed an eight-node isoparametric multilayer plate

element for the analysis of thin to thick fiber-reinforced composite plates.

This model has the generality in describing laminate response and can be easily

used to implement to attack complex laminated plate problems, but the assumption

of constant transverse displacement through laminate thickness still remains.

The hybrid stress model is based on the modified complementary energy

principle. An optimum choice of the number of the assumed stress modes for given

boundary displacement approximation can be made, which give greater flexibility

in the descriptions of the stress field. The detail of the development of this

method is documented in [6].

In the present investigation, a three-dimensional eight-node hybrid stress

element has been developed to analyze free vibrations of laminated plates. All

six stress components are included and assumed independently within each layer

through stress polynomials with 55 unknown stress parameters. The stress field

within each layer satisfies the dynamic equilibrium equations of free vibration.

The interface traction continuity and laminate upper/lower surface traction-free

conditions are also enforced. The displacement field is interpolated in terms of
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nodal displacements through shape functions. The displacements (u,v,w) are

assumed to vary linearly through the thickness of each lamina.

To solve the governing finite element equations of motion for a linear

dynamic analysis without damping the well-known Newmark direct integration method

[7] will be used to integrate the following equation

oe

[M]{q} + [k]{q} - [Q]

step by step.

The dynamic response of simply supported laminated composite plates under a

dynamic sinusoidally distributed load

Qosi n __xxsin _ H(t)Q - a

is analyzed. Numerical results of [90/0] antisymmetric cross-ply laminate and

[0/90/0] symmetric cross-ply laminate are presented. Center deflection, bending

stresses ax, ay, transverse shear stresses _xz and ryz and normal stress az for
both laminates are plotted as a function of time. Fast convergence is observed .

SUBSPACE ITERATION METHOD

are

the free vibration finite element equations of motion with damping neglected

oo

M q + K q - 0 (I)

where K is the structure stiffness matrix and M is the structure mass matrix.

Equation {i} can be solved by expressing the field variable as

q - 4e i_t (2)

where 4 is a nodal vector of order n, t the time variable, and _ the natural

frequency of vibration of the plate in the mode described by the vector

4. Substituting equation (2) into Equation (i) yields the generalized eigenvalue

problem

K 4 _2 M 4 - 0 (3)

from which 4 and _ can be determined. For matrices of dimension n x n, there

will be n eigensolutions (_i 2, 41), (_22, 42) ......... (_n 2, 4n), An important

property of the eigenvectors is that they satisfy the orthogonality conditions,
i.e.

4iT M 4j = _ij

4i T K 4j - _i 2 6ij

and 0 < _i 2 < _22 ........ < _n 2

(4)

There are many different techniques existing for the solution of eigenvalue

problems. Since the procedures for the eigenvalues problems are time consuming,

the choice of an appropriate and effective method is an important factor for the

general application, especially in the large eigenvalue problem. The subspace

iteration method suggested by Bathe [8] will be adopted to conduct the

investigation. This method has been used extensively in a number of general-
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purpose finite element analysis programs and has proven cost-effective and

reliable. In structure analysis, the lowest few elgenvalues (natural

frequencies) are the main concern of investigators. The basic objective in the

subspace iteration method is to solve for the p smallest eigenvalues and

corresponding eigenvectors, which satisfy

K 4 = M 4 A (5)

where 4 = [41, 42 ........ , 4p]

and A is a diagonal matrix of wi 2 and the eigenvector 4i also satisfies the

orthogonality conditions (Equation (4)).

The subspace iteration method consists of three steps [8]:

i. Establish q starting iteration vectors; q > p, q - min(2p, p+8) is a

proper selection, where p is the number of eigenvalues and eigenvectors

to be calculated.

2. Use simultaneous inverse iteration on the q vectors and Ritz analysis

to extract the "best" eigenvalue and eigenvector approximations from

the q iteration vectors.

For k - I, 2 ......

K Xk+l - M X k (6)

where X 1 is the starting iteration vector.

Find the projections of the operators K and M,

Kk+ 1 - Xk+l T K Xk+ 1

Mk+ I - Xk+l T M Xk+l

(7)

Solve for the eigensystem of the projected operators,

Kk+l Qk+l = Mk+l Qk+l Ak+l

Find an improved approximation to the eigenvectors,

Kk+l - Xk+l Qk+l

As k _ 4

Ak+ 1 _ A and Xk+ 1 _ 4

3.

Reference

(8)

(9)

(i0)

After iteration convergence, use the Sturm sequence check to verify

that the required eigenvalues and corresponding eigenvectors have been
calculated.

[8] has presented very detailed descriptions about the subspace

iteration method and is a good reference to use to become familiar with this

method.
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NEWMARK DIRECT INTEGRATION METHOD

The governing finite element equations of motion for a linear dynamic

analysis are

oo

M q + K q - 0 (ii)

where M and K are the mass and stiffness matrices, q and q are the nodal

displacement and acceleration vector, and Q is the load (nodal force) vector of

the finite element system. In finite element analysis, there exist many

effective numerical procedures to solve the linear differential equations,

Equation (ii). Basically, they can be divided into two methods of solution: the

direct integration method and the mode superposition method. In the present

study, the Newmark direct integration method [7] will be followed to integrate

Equation (ii) step by step. The following assumptions are made in the numerical

analysis:

qn+l - qn + [(l'6)'qn+6_+l]At (12)

• I
qn+l " qn + qnAt + [( 2 -a)eqn+_n+l] At2 (13)

where At is the time step size, n is the step number, and the parameters 6 and a

control integration accuracy and stability. At time tn+ I - (n+l)At, the finite

element equations of motion (Equation (Ii)) are described as:

O•

M qn+l + K qn+l - Qn+l (14)

@@

Solving from Equation (13) for qn+l in terms of qn+l, and then substituting into

Equation (14) and rearranging the terms transforms the equations to the form

A A

K qn+l - Qn+l (15)

where

A

K-aoM+K

A

Qn+l = Qn+l + M(aoqn+al_n+a2qn)

(16)

and

ao - I/a(At) 2

aI - I/_(At)

(17)

a2 - (i 2a)/2e

Once the displacements qn+l at time step n+l are known from Equation (15), the

velocities and accelerations can be computed by using Equations, (12) and (13)

and expresses as

o0 •

qn+l = ao(qn+l qn) " alqn " a2_n (18)

• • ee _O

qn+l - qn + a3qn + a4qn+l (19)

where
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a3 - (1 - _) (at) (20)

a4 - 6(At)

A special scheme originated by Newmark with 6 = 0.5 and _ = 0.25 is used here to

integrate the equations step by step. These values correspond to the constant-

average-acceleration method, which gives an unconditionally stable numerical

scheme [7].

DYNAMIC RESPONSE OF A SIMPLY SUPPORTED LAMINATED SQUARE PLATE

The dynamic response of simply supported laminated plates is presented in

this section. The laminates are subjected to suddenly applied sinusoidally

distributed pulse loading,

q(x, y, t) - (qosin_x/a sin_y/b)H(t)

where H(t) is the Heavyside step function.

are considered:

I.

.

(21)

The following two laminated plates

A two-layer anti-symmetric cross-ply (90/0) square laminate with layers

of equal thickness.

A three-layer symmetric cross-ply (0/90/0) square laminate with layers

of equal thickness.

In both problems, the same material properties as in Putcha and Reddy [9] are

employed for each individual layer.

EL - 525 GPa

ET - 21 GPa

GLT - GTT - 10.5 GPa (22)

ULT - UTT - 0.25

p m 0.8 g/cm 3

Owing to the biaxial symmetry of the laminate geometry, only one quadrant of the

laminate is analyzed. The geometry configurations and boundary conditions of the

finite element model are shown in Figure i.
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Figure Z Laminate geometry configurations and boundary
conditions

The normalized deflection and stresses are described as

= 1000ETh3W/qo a4

(ax, ay) = 10(ax, ay)/qo s2

(_z, Fxz, Fyz) = lO(°z, rxz' ryz)/qo s

S = a/h E l Z_

(23)

In the present study qo is taken to be i00 and the time step size is equal to 5

microseconds. The normalized central transverse deflection, w(a/2, a/2, 0), as a

function of time for a two-layer anti-symmetric simply supported cross-ply square

laminate under sinusoidal loading is shown in Figure 2. Throughout Figures 3, 4,

5 and 6, the stresses with respect to time for a two-layer laminate are plotted.

In Figures 3 and 4, it is observed that the normalized normal stress _x at center

top surface of the laminate is close to the normalized normal stress ay at center

bottom surface of the laminate, except ax is in tension and ay is in compression.
As shown in Figure 5, the variation of normalized shear stress _xz is similar to

_yzh From the plots, it is seen that the periods of the transient response for

w, ax, ay, ?xz, and Fyz are very closely related. This fact agrees with the
results of Putcha and Reddy [9]. The period for the normalized transverse normal

stress Sz(a/2, a/2, h/2), is much shorter when compared with others. A shorter

time step size (At = i microsecond) is employed to observe the periodic response

of the normalized transverse normal stress _z as shown in Figure 6.
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Figure 6 Transverse normal stress versus time for a 2-1ayer (90/0) laminate

under suddenly applied sinusoidal loading

The normalized central transverse deflection with respect to time for a

three-layer simply supported cross-ply (0/90/0) square laminate under sinusoidal

loading is shown in Figure 7. Figure 8 contains the normalized maximum normal

stresses, ax and Oy, as a function of time. The normalized shear stresses, _xz

andryz, are shown in Figure 9. The periods for the normalized deflection and
stresses are similar. In Figure 9, the amplitude of the response is larger for

_xz than for _yz; it is because the bending stiffness is higher in the x-
direction than in the y-direction for a three-layer (0/90/0) laminate with layers

of equal thickness. The normalized central normal stress distribution, ax,

through the thickness of the laminate for time from 20 to 80 microseconds is

shown in Figure i0.

In the present study, a four-node isoparametric plate element with 48

assumed stress parameters for each lamina is used. Fast convergence is observed;

only a 5 x 5 mesh is modeled in a quadrant of the laminate.
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Figure 7 Center deflection versus time for a 3-1ayer cross-ply (0/90/0)

laminate under suddenly applied sinusoidal loading
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Figure 8 Normal stresses versus time for a 3-1ayer (0/90/0) laminate under

suddenly applied sinusoidal loading
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Figure 9 Transverse shear stresses versus time for a ]-layer (0/90/0) laminate

under suddenly applied sinusoidal loading
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Figure 10 Through-thickness center normal stress versus z for a 3-1ayer

(0/90/0) laminate under suddenly applied sinusoidal loading

for Lime from 20 to 80 microseconds

CONCLUDING REMARKS

The proposed three-dimensional hybrid stress finite element method in

conjunction with the Newmark's direct integration method seems to be a powerful

technique for analyzing laminated composite plates under dynamic loading. By

using this approach the transverse deflection, the in-plane bending stresses and

the interlaminar shear stresses and normal stress can be evaluated very easily

without consuming too much computation time. This method can also be used to

analyze forced vibration problems of laminated composite under impact loading.

The result will be published in the near future.
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